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Abstract. With extracted local features of a given image, computing
its global feature under perceptual framework has shown promising per-
formance in object recognition. However, under some tough applications
with large intra-class variance, using only one kind of local feature is
inadequate to build a robust classification system. To integrate the dis-
criminability of complementary local features, in this paper, we extend
the efficacy of perceptual framework to adapt to heterogeneous features.
Given multiple raw global features, we propose a fusion strategy through
metric learning, which is called weak metric learning in this work, for fus-
ing high dimensional features. The fusion model is solved with the max-
imal kernel canonical correlation formulation with the multiple global
features as outputs. Experimental results show that our method achieves
significant improvements about 5% to 11% than the benchmark percep-
tual framework system, HMAX, on several difficult categories of object
recognition with much less training samples and feature elements.

Keywords: Object recognition, feature fusion, weak metric learning,
perceptual distance.

1 Introduction

Object recognition has seen rapid progress in recent years, motivated by inno-
vative studies in relative fields such as statistical learning and cognition science.
However, it is still in a long arduous travel for machine to approach human
being’s vision capability which can distinguish about 30,000 categories with
very few training samples [I]. As a highlight of current researches, some human
perception-inspired models [2[3] reach state-of-the-art performance.

Studies of human perception construct a basic framework for object recogni-
tion. Rosch [4] argued that categories are not defined by lists of features but by
similarity to prototypes. Similarities defined on prototype examples, or equiv-
alently perceptual distances rather than feature spaces attract the focus of re-
searches. In this framework, scaling to a large number of categories just requires
enough prototypes instead of adding new features. It is also possible to train the
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Fig. 1. Four images from scorpion category of the Caltech 101 dataset [I], which show
large appearance variations. The main variations include mixed scorpion species with
different biological morphology, texture blur, pose change, and cluttered background.

model with very few samples because the invariance to certain transformations
or intra-class variation can be built into the perceptual distance function.

Serre and Poggio [BI3] modeled the ventral stream of primate visual cortex as
a hierarchical structure (HMAX) for object recognition. The model is composed
of S1, Cq, S2 and (s layers, of which C; produces local feature invariant to
scaling and rotation and Cy computes global features by defined perceptual dis-
tance (or similarity function). Corresponding to visual cortex, S layers improve
invariance while C' layers improve selectivity. The tradeoff between invariance
and selectivity is achieved through alternate procedures. Frome [2] chose to learn
a perceptual distance function for each example with metric learning algorithms
[6], which determine weights for elements of all global features. In nature, these
algorithms learn a transformation for the entire sample space.

These models and most perceptual inspired models follow the insight of Rosch
[4] and share a basic outline: (1) For a test or training image, select a set of
interest regions and extract patches from them. (2) Compute a local feature
for each patch, which gives a set of local features for each given image. (3) For
image pairs, return a value of distance by defining a distance function on their
feature sets [1I2]. Or, given a local feature set from a image and the learned
prototypes, return a set of distances as the global feature by defining a distance
function between image and prototypes [3]. (4) Assign a category label to the
image using the distance function or global feature. In step (3), both distance
functions, known as perceptual distance, are defined on the local feature space.

However, local features developed for tasks like image registration can lead
to a problem that they tend to fail under extreme lighting and pose conditions
(for instance, SIFT [8] will be failure on binary images), and therefore could not
provide enough discriminative information to classify complex objects, where
even images from the same category show large intra-class variance. See Fig. [Il

Recently, some multiple local feature representations [910] were proposed to
attack the above problem under “distance function learning” framework [2] (learn
distance functions instead of computing global feature with local features). Mo-
tivated by the capability of perceptual inspired models, we explore to integrate
multiple local features with global feature computation models, such as HMAX.

In this paper, we propose an integrated solution that extends feature compu-
tation model and fusion strategy of global features, as illustrated in Fig. Bl It
extends the HMAX model to adapt multiple local features, however, in general
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Fig. 2. Illustration of our framework

the extension to other models [72] is straightforward. The model could adapt
to multiple kinds of local features. For each kind of feature, corresponding raw
global feature is computed by measuring its distances from the pre-computed
prototypes with the same feature representatiorﬂ Then an algorithm, namely
weak metric learning, is developed to fuse these raw global features for object
recognition. In nature, it aligns features at the metric level. For the feature fusion
task, a criterion, maximal kernel canonical correlation [I1IT2], is used to solve
the weak metric learning model. In sum, our main contributions are two folds.

1. Extend the global feature computation model, HMAX, to adapt to multi-
ple complementary local features. It greatly improves the capability of the
system to recognize ambiguous categories.

2. Introduce the kernel canonical correlation to learn the metrics to fuse dif-
ferent global features. Each set of metric weights is derived from the same
template function with few free parameters so that the fusion model could
be solved with few training samples.

For the improved features, experiments performed on Caltech 101 [I] show con-
sistently significant improvement about 5 ~ 11% than the benchmark model
HMAX [3] with robust performance.

2 Model Extensions

The original HMAX model is composed of three steps: (1) compute C response
for the given image, (2) learn prototypes from C) responses of images, (3) for
each prototype, compute the maximal response between the prototype and the
C1 response, which produces an element of the global feature Cs. To extend
it for multiple local features, the point is to represent an image with a set of

! The prototypes are extracted from a set of randomly selected images, such as natural
images.
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patches and define the C'y response on these image patches instead of the whole
image (the patch based C response is called C; descriptor in the paper). Then
the following steps are updated accordingly and other local features could be
introduced into the model by replacing C descriptor.

In the extended model, the final global feature is computed according to the
following four steps.

1. Extract patches from experimental images and arbitrary natural images. The
natural images are used for learning prototypes.

2. Consider a type of local feature, compute a set of such features for the
extracted patches.

3. Learn prototypes from the local feature set of natural images, and compute
the raw global feature for an image with its local feature set and the learnt
prototypes.

4. Multiple kinds of raw global features could be computed by replacing the
feature type at step 2. Fuse the raw global features as the final global feature.

In this section, we describe how to compute the raw global features from local
features. The fusion scheme will be introduced in Section Bl

Given image I and its local patch set P(I) = {p;}?; with varying sizes at
detected interest regions, the local feature c¢ is computed for each patch. Let
C(I) = {c;}I_, represent the local feature set of image I. At learning step, pro-
totypes are extracted from local feature set UxC (1)) of natural images randomly
and the learnt prototypes set is represented as 7 = {c}}™;.

For candidate image I with its local feature set {c;}?_; and learnt prototype
set {c}™,, the element of raw global feature x(I) € R™ which corresponds to
the local feature set, namely, the perceptual distance, is defined as

o uin d(cf ), (1)
where function d is a distance measurement of local features ¢} and c. We employ
Euclidean distance and normalized inner product to measure C7 and SIFT based
perceptual distance respectively in this work. Further, the minimum distance
could be regarded as an implementation of the maximal neural response. For C
feature, the simulated neural response corresponds to the shape tuning process
of visual cortex. On the other hand, x; could be interpreted as the baseline
representation of patch ¢, based on the prototype set 7.

Some descriptors such as SIFT [§], shape context [I3] and geometric blur
[14], can be used in the extended model. Most of them follow the scale space
theory [I5] and are invariant to rotation, scaling, or affine translation. In our
solution, two complementary descriptors, C; and SIFT, are introduced into the
extended model because C encodes rich contour and shape information and
the complementary SIFT encodes rich gradient information. In the following
sections, the C; based raw global feature and the SIFT based raw global feature
are called as Co and SIFT5 respectively. What should be mentioned here is that
only two descriptors from patches with the same size could be used for computing
the perceptual distance.
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3 Weak Metric Learning for Feature Fusion

With previous steps, two raw global features are computed. However, global
features derived from different local features have different metrics even though
they share the same perceptual distance function. Common schemes suggest to
learn two weights for them. Moreover, recent work in [9] shows that multiple fea-
tures fusion could benefit from subspace learning. However, it is hard to merge
the metric difference of features in this task with these methods. In this sec-
tion, a novel fusion scheme towards eliminating metric difference through metric
learning is proposed. We also develop a novel metric learning method called as
weak metric learning to deal with high dimensional feature. A criterion, maximal
canonical correlation is used to solve the metric weights.

3.1 Formulation

Metric learning [26] is originally proposed to learn distance or similarity function
by weighting each feature dimension. In [I6], a correlation metric for feature
extraction and similarity measurement is proposed. The technique can eliminate
metric difference between feature dimensions implicitly. However, the metric
learning scheme has to determine large number of independent weights therefore
the scheme tend to fail for high dimensional feature and relative few training
samples. In the weak metric learning scheme, a set of nonlinearly dependent
weights are assigned to feature dimensions, and only few function parameters,
instead of large numbers of weights, have to be determined.

For a given image, suppose similar feature elements correspond to the sim-
ilar prototypes therefore they have similar metrics with similar weights. The
continuous function h € H is used for assigning weights w; = h(x;)/x; to the
global feature x(I) € R™. Then the weighed feature x’(I) could be formulated as

x'(I) = diag(wy, ..., wn)x(I)
= (h(z1), ..., h(zm))T (2)
= hOX(I)

It suggests that weighting feature with template derived weights equals to apply-
ing a nonlinear transformation on the feature. Because weights for a raw global
feature are derived from the same template function h, the task of determining
weight set {w; }I™, is converted to determine the parameter set of the template
function h. The weights are nonlinearly dependent because the number of free
parameters of {w;}; (equals to the parameter number of h) is much smaller
than m. It leads to a weak learning scheme. However, with capacity increasing
of the template function h, the weak metric learning scheme will approach the
general metric learning.

Similar to [2I6], the scheme can also be used to learn the distance function
and solved with maximal margin formulation on the triplets training set. For
fusion tasks, however, we develop a different model and solving scheme.
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3.2 Metric Solving and Feature Fusion

For raw global features introduced in Section[2] we try to fuse them by weighting
their elements. We next focus on fusing two features and the way to fuse multiple
features is similar. The weight set for a raw global feature in Eq. (2] is derived
from the same template function. As to fuse two features, two independent weight
sets, equally two template functions have to be determined.

In [I7], the canonical correlations of within-class sets and between-class sets
for discriminative learning is explored. [I8] uses canonical correlation analysis for
feature fusion by determining pairs of projective matrices, given two candidate
features. Different from above works, we employ canonical correlation to deter-
mine template functions (or the derived weight set equally) instead of projective
matrices, though a weight set could be regarded as a special projective matrix.

The kernel version of canonical correlation [ITI12] is used in the process of
feature fusion, in our work, because it increases the flexibility of the feature
selection through kernel trick. For the training image set Zy, raw global features
Xnsp= X1y, xN)T, Yyxg = (y1,-..,y~n)T are computed from two different
kinds of local features respectively with Eq. (). Given nonlinear transformations
g,h € H, the kernel canonical correlation of two weighted global features is
defined as

#g,h, ., B) = corneer(a” (g0 X), BT (h oY), 3)

where g o X represents applying transformation g on feature matrix X, as Eq.
@) formulated, and vectors a, 3 € RN represent the combination coefficients of
canonical correlation. We choose optimum nonlinear transformations by maxi-
mizing Eq. @) stepwise

*hE) = max_¢(g,h 4
(97,h7) = arg max max ¢(g, h, o, ), (4)

where max, g is a constrained maximizing process. We maximize Eq. @) by
enumerating ¢, h in function space H firstly. After g and h are given, we then
further maximize ¢(h, g, a, 3) in space RY. That is to maximize kernel canonical
correlation

Oé%g%{corrker(aT (g0 X),8T(hoY))

s.t.:var(a’(go X)) =var(B ' (hoY)) = 1.

It can be solved using Lagrange method which leads to an eigenvalue decompo-
sition problem. Then ¢max(g, k) could be substituted into Eq. @) to continue
maximizing in function space. It is time consuming to enumerate function space
H. A specific yet effective solving procedure is to solve the optimization prob-
lem in the parameter space of a certain function instead of in the function space.
Specially, let H be a function family parameterized by 8 € R®. Eq. @) can be
formulated as

(0;,0) = arg eg,%lh,anRS a%§§N¢(997 O, , ). (5)
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According to our experiments, enumerating 6, and 6, on an experiential range
can satisfy this problem. To ensure optimization, for each candidate image, two
local feature sets should be derived from the same patch set.

After parameter sets 6 and 6}, are determined, two weighted global features
could be given by Eq. @), leading to the final global feature (x'(I)*,y’(1)")T.
In the metric learning based fusion scheme, weighting on each feature element
can be regarded as the adjusting process with feedback signals in visual cortex.

4 Experiments

Object recognition experiments with the fused global feature are performed on
Caltech 8 to (1) show the advantage of the extended model and the fusion scheme;
(2) examine the stability of fused features under varying number of samples and
feature elements. The HMAX is chosen as the benchmark system because it
provides the basic framework for our method. The SVM is used as classifier.

4.1 Dataset and Experimental Setup

A subset of Caltech 101 is chosen in the experiments. Although some categories
in Caltech 101 are relative easy to classify, many categories with images taken
under extreme lighting and large variations on view and pose are hard to be
recognized. The same difficult may also come up in several sub categories with
large intra-class variance. To validate the efficacy of our model, we deliberately
select 8 difficult categories and the background category with the size of samples
ranging from 80 to 800 for test. To speed up feature computation, all the images
are normalized to gray images with 140 pixels high and a fixed aspect ratio.

We extract patches from interest regions. Several interest region detectors
such as MSER [19], Harris-Affine, and Hessian-Affine [20] can be embedded
into our framework. According to the comparison studies in [21], we select the
Hessian-Affine as the detector of the interest regions. For a candidate image,
patches with the sizes of 4x4, 8x8, 12x12, and 16x16 are extracted from all
the interest regions respectively. The Cy descriptors are constructed for each
patch while SIFT descriptors are constructed for 12x12 and 16x16 patches.
For prototype learning, patch extraction and descriptor construction are similar
to the candidate images, except that for 500 patches per size are randomly
extracted from interest points. Although descriptors could be constructed for all
size of patches, descriptors from 12x12 and 16x16 patches work well. Then two
prototype sets are learnt from natural images for C7 and SIFT respectively.

At feature fusion step, two independent Gaussian functions are chosen for
the weak metric learning procedure, with scale factor ranging from 6.5 to 10,
variance ranging from 0.4 to 1.1 and mean ranging from 1.6 to 2.8. Larger range
might improve the performance with more expensive time cost. Given the set
sizes, the training set and testing set are sampled randomly from corresponding
categories, as the same scheme for raw global features. For each setting, we
sample data set and raw features about 20 to 40 rounds respectively. Then the
average performance and its variance are reported in the final results.



280 X. Li et al.

Table 1. Performance comparison of three global feature settings: the feature with
2000 C3 elements, the combinational feature of 1600 C2 and 400 SIFT2 elements, and
the fused feature of 1600 C2 and 400 SIFT: elements using our proposed method.
Experiments are conducted under a configuration that the number of positive train-
ing samples, negative training samples, positive testing samples and negative testing
samples are 30, 50, 50, and 50 respectively.

Data set C5 Combination of Cy and SIFT2 Fusion of C> and SIFT,

Butterfly 0.8092 0.8515 0.8879
Brain 0.8112 0.8458 0.8833
Bonsai 0.7969 0.8130 0.8681
Chandelier 0.7783 0.7891 0.8281
Car-side  0.9737 0.9791 0.9929
Airplanes 0.9674 0.9735 0.9800
Buddha  0.7947 0.8349 0.8729
Scorpion  0.7754 0.8058 0.8438
4.2 Results

To test the performance under different configurations, the size of the positive
training set and the length of the global feature are varying in our experiments.
The experimental setting is as follows: the sizes of negative training set, positive
testing set and negative testing set are taken as 50 respectively.

We run a series of experiments using 30 positive training images per category
and 2000 elements (corresponding to 2000 prototypes) per global feature on the
9 categories dataset, with 30 random training sets (also 30 testing sets) and 20
random subsets of global feature (30x20 rounds overall). To evaluate perfor-
mance, three global feature settings which share the same feature dimension but
different element configurations, the feature with 2000 C5 elements, the com-
binational feature of 1600 C5 elements and 400 SIFTs elements, and the fused
features of 1600 Cy elements and 400 SIFT5 elements, are compared.

As shown in Table 1, Cy feature achieves high performance about 96.7% to
97.4% on Car-side and Airplanes categories and relative low performance about
77.5% to 81.1% on other categories. Similar situation appeared in other two
settings. This is because that images of Car-side or Airplanes have small vari-
ance or similar appearance even though they are taken from different lighting
and pose conditions. For all 8 categories, the combinational feature of C5 and
SIFT5 elements outperforms Cy feature about 0.6% to 4.2%. On the other hand,
experiments in [3] indicate that increasing the number of feature elements is
hard to improve the performance when the number is more than 1000. These
evidences suggest that only appending other complementary descriptors based
feature elements may be helpful. Compared with Cy feature, our fusion scheme
reaches an improvement about 5.0% to 7.9% on categories except Car-side and
Airplanes (improvement about 1.3% to 1.9%).

To validate the fusion scheme on scalable positive training images, varying
number of positive training images are tested. Fig. [3] shows these results for 5
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Fig. 3. Comparison between the feature of 2000 C2 elements and the fused feature of
1600 C2 and 400 SIFT3 elements on Caltech 8 for varying number of training examples

categories in Caltech 101. Our fusion scheme outperforms Cs on all tested cate-
gories. For easy categories Car-side and Airplanes, fusion scheme with 5 positive
training images achieve satisfying performance about 97.8% and 95.1% with im-
provements about 3.9% and 9.2%. For other three categories, fusion scheme with
20 positive training images reach significant performance more than 83.1% while
the performance of Cs feature is under 77.2%, and it also outperforms Cs about
5.1% to 7.9% when the number of positive training images is more than 20.

We also perform a series of experiments for varying number of feature elements
from 2 to 2500 to test the fusion scheme. As shown in Fig. [l the fusion scheme
outperforms Csy feature under all settings. For easy categories Car-side and Air-
planes, the fused feature with 50 elements reach a satisfying performance about
97.5% and 95.5% with improvements about 4.0% and 4.5%. For other tested
categories, the fused feature with 100 elements reaches significant performance
exceeding 80% when the performance of Cy feature is no more than 72.5%. Un-
der settings of 50 or more feature elements, the fusion scheme outperforms Cy
feature at least 5.9%, especially 11.8% for Butterfly category.

In the fusion scheme, the optimization process of Eq. (Bl) consumes more time
than other steps. Using Gaussian function as the template function to solve Eq.
(@) by enumerating 448 parameter points on a normal computer takes about 110
seconds per 80 training images. When the size of dataset grows, the computation
complexity mainly depends on the maximization in RY and linearly depends on
the enumeration number on R®. In our solution, the patch set that represents
the candidate image is extracted from interest regions instead of overlapping
regions [3] so that Eq. () takes only 1/70 time of it to compute global features.
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5 Conclusions

In this paper, the perception inspired framework, HMAX, is extended to adapt
multiple local features, producing multiple raw global features. A weak met-
ric learning algorithm is developed for high dimensional features towards con-
structing the feature fusion model. The metric learning based model is solved
through maximal canonical correlation formulation, giving the final global fea-
ture for object recognition towards difficult categories. Experiments on Caltech
8 show significant improvements under settings of varying number of training
images and feature elements, which also confirms the validity and stability of
our scheme. The fusion scheme, however, reaches the performance at the cost of
much computing time, which will be the further research topic of this model.
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